By Topic

Application of the extremum stack to neurological MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Simmons, A. ; Dept. of Clinical Neurosci., Inst. of Psychiatry, London, UK ; Arridge, S.R. ; Tofts, P.S. ; Barker, G.J.

The extremum stack, as proposed by Koenderink (1984), is a multiresolution image description and segmentation scheme which examines intensity extrema (minima and maxima) as they move and merge through a series of progressively isotropically diffused images known as scale space. Such a data-driven approach is attractive because it is claimed to he a generally applicable and natural method of image segmentation. The performance of the extremum stack is evaluated here using the case of neurological magnetic resonance imaging data as a specific example, and means of improving its performance proposed. It is confirmed experimentally that the extremum stack has the desirable property of being shift-, scale-, and rotation-invariant, and produces natural results for many compact regions of anatomy. It handles elongated objects poorly, however, and subsections of regions may merge prematurely before each region is represented as a single node. It is shown that this premature merging can often be avoided by the application of either a variable conductance-diffusing preprocessing step, or more effectively, the use of an adaptive variable conductance diffusion method within the extremum stack itself in place of the isotropic Gaussian diffusion proposed by Koenderink.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 3 )