Cart (Loading....) | Create Account
Close category search window
 

Testability analysis and behavioral testing of the Hopfield neural paradigm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alippi, C. ; Dept. of Electron. & Inf., Politecnico di Milano, Italy ; Fummi, F. ; Piuri, V. ; Sami, M.
more authors

Testability analysis and test pattern generation for neural architectures can be performed at a very high abstraction level on the computational paradigm. In this paper, we consider the case of Hopfield's networks, as the simplest example of networks with feedback loops. A behavioral error model based on finite-state machines (FSM's) is introduced. Conditions for controllability, observability and global testability are derived to verify errors excitation and propagation to outputs. The proposed behavioral test pattern generator creates the minimum length test sequence for any digital implementation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

Sept. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.