By Topic

2D affine transformations cannot account for human 3D object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liu, Z. ; NEC Res. Inst., Princeton, NJ, USA ; Kersten, D.

Converging evidence has shown that human object recognition depends on observers' familiarity with objects' appearance. The more similar the objects are, the stronger this dependence will be, and the more important two-dimensional (2D) image information will be. The degree to which 3D structural information is used, however, remains an area of strong debate. Previously, we showed that all models that allow rotations in the image plane of independent 2D templates could not account for human performance in discriminating novel object views. We now present results from models of generalized radial basis functions (GRBF), 2D nearest neighbor matching that allows 2D affine transformations, and a Bayesian statistical estimator that integrates over all possible 2D affine transformations. The performance of the human observers relative to each of the models is better for the novel views than for the template views, suggesting that humans generalize better to novel views from template views. The Bayesian estimator yields the optimal performance with 2D affine transformations and independent 2D templates. Therefore, no models of 2D affine operations with independent 2D templates account for the human performance

Published in:

Computer Vision, 1998. Sixth International Conference on

Date of Conference:

4-7 Jan 1998