By Topic

Removing electroencephalographic artifacts: comparison between ICA and PCA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tzyy-Ping Jung ; Comput. Neurobiol. Lab., Salk Inst., San Diego, CA, USA ; Humphries, C. ; Te-Won Lee ; Makeig, S.
more authors

Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals, and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of the independent component analysis (ICA) algorithm for performing blind source separation on linear mixtures of independent source signals. Our results show that ICA can effectively separate and remove contamination from a wide variety of artifact sources in EEG records with results comparing favourably to those obtained using principal component analysis (PCA)

Published in:

Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop

Date of Conference:

31 Aug-2 Sep 1998