Cart (Loading....) | Create Account
Close category search window

Analysis of wave propagation in inhomogeneous media using FDTD method and its applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tanyer, S.G. ; Dept. of Electr.-Electron. Eng., Baskent Univ., Ankara, Turkey ; Karaman, Mustafa ; Ozturk, I.

A new simulator to predict the wave propagation in inhomogeneous media is developed. The wave equation is approximated by the approximate difference equations using the finite difference time domain (FDTD) method. The effects of an aberrating layer on radar imaging are examined for various step and graded velocity profile aberrating layers. The method is illustrated for the case where the whole media is inhomogeneous. The permittivity of the medium is assumed to vary in a low-pass Gaussian manner above a constant value. This analysis of radar imaging becomes very important when the medium itself acts as many scatterers. The received echoes are calculated for various values of surface roughness and permittivity difference for both the aberrating layer and the inhomogeneous media. The effects of inhomogeneity on the point spread function (PSF) are analyzed. Later, the cross correlation between the echo signals received at different elements of the radar array are examined as a function of the distance between the elements. The effects of inhomogeneity of the medium on the cross correlation coefficients are also studied

Published in:

Mathematical Methods in Electromagnetic Theory, 1998. MMET 98. 1998 International Conference on  (Volume:2 )

Date of Conference:

2-5 Jun 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.