Cart (Loading....) | Create Account
Close category search window
 

Variational image segmentation using boundary functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hewer, G.A. ; Naval Air Warfare Center, China Lake, CA, USA ; Kenney, C. ; Manjunath, B.S.

A general variational framework for image approximation and segmentation is introduced. By using a continuous “line-process” to represent edge boundaries, it is possible to formulate a variational theory of image segmentation and approximation in which the boundary function has a simple explicit form in terms of the approximation function. At the same time, this variational framework is general enough to include the most commonly used objective functions. Application is made to Mumford-Shah type functionals as well as those considered by Geman and others. Employing arbitrary Lp norms to measure smoothness and approximation allows the user to alternate between a least squares approach and one based on total variation, depending on the needs of a particular image. Since the optimal boundary function that minimizes the associated objective functional for a given approximation function can be found explicitly, the objective functional can be expressed in a reduced form that depends only on the approximating function. From this a partial differential equation (PDE) descent method, aimed at minimizing the objective functional, is derived. The method is fast and produces excellent results as illustrated by a number of real and synthetic image problems

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 9 )

Date of Publication:

Sep 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.