Cart (Loading....) | Create Account
Close category search window
 

A harmonic retrieval framework for discontinuous motion estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-ge Chen ; Microsoft Corp., Redmond, WA, USA ; Giannakis, G.B. ; Nandhakumar, N.

Motion discontinuities arise when there are occlusions or multiple moving objects in the scene that is imaged. Conventional regularization techniques use smoothness constraints but are not applicable to motion discontinuities. In this paper, we show that discontinuous (or multiple) motion estimation can be viewed as a multicomponent harmonic retrieval problem. From this viewpoint, a number of established techniques for harmonic retrieval ran be applied to solve the challenging problem of discontinuous (or multiple) motion. Compared with existing techniques, the resulting algorithm is not iterative, which not only implies computational efficiency but also obviates concerns regarding convergence or local minima. It also adds flexibility to spatio-temporal techniques which have suffered from lack of explicit modeling of discontinuous motion. Experimental verification of our framework on both synthetic data as well as real image data is provided

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 9 )

Date of Publication:

Sep 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.