By Topic

Optimal design and noise consideration of micromachined vibrating rate gyroscope with modulated integrative differential optical sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Degani, O. ; Kidron Microelectron. Res. Center, Technion-Israel Inst. of Technol., Haifa, Israel ; Seter, D.J. ; Socher, E. ; Kaldor, S.
more authors

A novel design of a micromachined vibrating rate gyroscope is presented. The rate gyroscope consists of a suspended proof mass which is attached by indium bumps to a CMOS chip. The proof mass is excited to vibration by electrostatic force. The displacements due to rate are sensed optically, using CMOS-integrated photodiodes and analog electronics. System considerations, including the mechanical behaviour, optical sensing, electronics, and noise sources of the rate gyroscope, are discussed. An expression for the noise equivalent rate (NER) of the system is obtained in order to derive an optimal design approach for the rate gyroscope. Optimal design and simulations of a case study of a rate gyroscope are presented. The device shows the ability of sensing 1 deg/h even at moderate quality factors of the order of 5000 and low-excitation voltages of 2.25 V

Published in:

Microelectromechanical Systems, Journal of  (Volume:7 ,  Issue: 3 )