By Topic

Mechanical properties of thin films from the load deflection of long clamped plates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
V. Ziebart ; Phys. Electron. Lab., Eidgenossische Tech. Hochschule, Zurich, Switzerland ; O. Paul ; U. Munch ; J. Schwizer
more authors

A plane-strain load-deflection model for long plates clamped to a rigid support is developed. The analytical model describes the nonlinear deflection of plates with compressive or tensile residual stress and finite flexural rigidity under uniform load. It allows for the extraction of the residual stress and plane-strain modulus of single-layered thin films. Properties of compressively and weakly prestressed materials are extracted with an accuracy achieved previously only with tensile samples. Two approximations of the exact model are derived. The first reduces the plates to membranes by neglecting their flexural rigidity. Considerable errors result from this simplification. The second approximation provides an exact expression for the linear plate response. Using the model, mechanical properties were extracted from two plasma-enhanced chemical-vapor deposition (PECVD) silicon nitride films with weakly tensile and compressive prestress, respectively. Measured residual stresses are 1.3±3.8 and -63±12.4 MPa, respectively. Corresponding plane-strain moduli are 134.4±3.9 and 142±2.6 GPa, respectively

Published in:

Journal of Microelectromechanical Systems  (Volume:7 ,  Issue: 3 )