Cart (Loading....) | Create Account
Close category search window
 

A new silicon gas-flow sensor based on lift force

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Svedin, N. ; Dept. of Signals, Sensors & Syst., R. Inst. of Technol., Stockholm, Sweden ; Kalvesten, E. ; Stemme, E. ; Stemme, G.

This paper presents the first silicon-flow sensor based on lift force. The sensor is a bulk-micromachined airfoil structure that uses the lift force as a sensing principle. The lift force acts normal to the flow in contrast to drag-force sensor types, where the force acts in the flow direction. The sensor utilizes the special distribution of the lift force along the length of the sensor structure. Since the sensor, like an airfoil, is mounted at a small angle to the flow, it induces very little flow disturbance. The sensor consists of two plates connected to a center beam. Each plate is 5×5-mm square with a thickness of 30 μm. The flow-induced forces deflect the two plates in the same direction, but with different magnitude. The deflections are detected by polysilicon strain gauges. The differential mode bridge makes the sensor insensitive to common mode deflection, e.g., acceleration forces. The lift-force principle is characterized using fundamental airfoil theory. The sensor has been experimentally verified, and a flow sensitivity of 7.4 μV/V/(m/s)2 has been measured in both flow directions

Published in:

Microelectromechanical Systems, Journal of  (Volume:7 ,  Issue: 3 )

Date of Publication:

Sep 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.