By Topic

The microfabrication of capacitive ultrasonic transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xuecheng Jin ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; Ladabaum, I. ; Khuri-Yakub, B.T.

Surface-micromachined capacitive ultrasonic transducers, which are suitable for operation in both air and water, have been fabricated and tested. Amorphous silicon is used as a sacrificial layer because of its good etching selectivity versus a nitride membrane, and improved cell-size control is obtained by lithographic definition of cavity walls. In addition, appropriate feature designs based on two-dimensional (2-D) process simulations make it possible to achieve device cavity sealing with g-line optical lithography. Transmission experiments in both water and air are presented. A dynamic range in excess of 110 dB is observed in air at 2.3 MHz. In water, a single pair of transducers is able to operate from 2 to 15 MHz. When tuned, a 3.5-MHz tone burst results in a received signal with better than 60-dB signal-to-noise ratio (SNR). The transducer behaviour agrees with a theoretical understanding of transducer dynamics. The dynamic ranges achieved in this paper are the best reported to date for surface-micromachined capacitive ultrasonic transducers

Published in:

Microelectromechanical Systems, Journal of  (Volume:7 ,  Issue: 3 )