By Topic

Incremental learning with sample queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ratsaby, J. ; Manna Network Technol., Tel Aviv, Israel

The classical theory of pattern recognition assumes labeled examples appear according to unknown underlying class conditional probability distributions where the pattern classes are picked randomly in a passive manner according to their a priori probabilities. This paper presents experimental results for an incremental nearest-neighbor learning algorithm which actively selects samples from different pattern classes according to a querying rule as opposed to the a priori probabilities. The amount of improvement of this query-based approach over the passive batch approach depends on the complexity of the Bayes rule

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 8 )