We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Scattering of screened excitons by free carriers in semiconducting quantum well structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng, Y.-P. ; Dept. of Phys., Purdue Univ., West Lafayette, IN, USA ; Spector, Harold N.

The theoretical treatment of the scattering of excitons by free electrons and holes in a two-dimensional semiconducting quantum-well system is extended to take into account screening by the free carriers. The scattering cross sections are calculated using the Born approximation for elastic scattering of the excitons by the free carriers. For the heavy-hole exciton, the screening by the free carriers reduces the cross section for free-carrier exciton scattering for all values of the energy of relative motion of the free carriers and the excitors. For the light-hole exciton, however, screening can actually lead to an enhancement of the scattering cross section for low values of the energy of relative motion when the density of free carriers is high. This is because screening not only reduces the interaction between the free carriers and the exciton, but also decreases the binding of the exciton, leading to a larger effective radius of the exciton. The results for the scattering cross sections are then applied to calculate the contribution of the exciton linewidth due to elastic scattering of the excitons by free carriers. It is found that this contribution to the exciton linewidth is decreased below its value in the absence of screening for both the heavy- and light-hole excitons.<>

Published in:

Quantum Electronics, IEEE Journal of  (Volume:24 ,  Issue: 8 )