By Topic

Unsupervised texture segmentation in a deterministic annealing framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hofmann, T. ; Dept. of Brain & Cognitive Sci., MIT, Cambridge, MA, USA ; Puzicha, J. ; Buhmann, J.M.

We present a novel optimization framework for unsupervised texture segmentation that relies on statistical tests as a measure of homogeneity. Texture segmentation is formulated as a data clustering problem based on sparse proximity data. Dissimilarities of pairs of textured regions are computed from a multiscale Gabor filter image representation. We discuss and compare a class of clustering objective functions which is systematically derived from invariance principles. As a general optimization framework, we propose deterministic annealing based on a mean-field approximation. The canonical way to derive clustering algorithms within this framework as well as an efficient implementation of mean-field annealing and the closely related Gibbs sampler are presented. We apply both annealing variants to Brodatz-like microtexture mixtures and real-word images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 8 )