By Topic

Hilbert-Schmidt lower bounds for estimators on matrix lie groups for ATR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
U. Grenander ; Div. of Appl. Math., Brown Univ., Providence, RI, USA ; M. I. Miller ; A. Srivastava

Deformable template representations of observed imagery model the variability of target pose via the actions of the matrix Lie groups on rigid templates. In this paper, we study the construction of minimum mean squared error estimators on the special orthogonal group, SO(n), for pose estimation. Due to the nonflat geometry of SO(n), the standard Bayesian formulation of optimal estimators and their characteristics requires modifications. By utilizing Hilbert-Schmidt metric defined on GL(n), a larger group containing SO(n), a mean squared criterion is defined on SO(n). The Hilbert-Schmidt estimate (HSE) is defined to be a minimum mean squared error estimator, restricted to SO(n). The expected error associated with the HSE is shown to be a lower bound, called the Hilbert-Schmidt bound (HSB), on the error incurred by any other estimator. Analysis and algorithms are presented for evaluating the HSE and the HSB in cases of both ground-based and airborne targets

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 8 )