By Topic

A physics-based three-dimensional model for distributed feedback laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xun Li ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont., Canada ; Sadovnikov, A.D. ; Huang, W.-P. ; Makino, T.

A comprehensive physics-based three-dimensional (3-D) model for distributed feedback (DFB) lasers is developed and presented. The model considers self-consistently optical confinement, carrier transport and heat transfer over the two-dimensional (2-D) cross section. It also accounts for the longitudinal spatial hole-burning effect along the laser cavity. A rigorous optical gain model is incorporated into the 3-D model. A number of novel techniques are used in implementation of the model for efficient simulation of de and ac performance. The simulator runs efficiently on a personal computer and can be incorporated as part of the computer-aided engineering tools for the design and analysis of DFB lasers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 9 )