By Topic

Interpolation-free subpixel motion estimation techniques in DCT domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ut-Va Koc ; Lucent Technol., AT&T Bell Labs., Murray Hill, NJ, USA ; Liu, K.J.R.

Currently existing subpixel motion estimation algorithms require interpolation of interpixel values which undesirably increases the overall complexity and data flow and deteriorates the estimation accuracy. We develop discrete cosine transform (DCT)-based techniques to estimate subpel motion at different desired subpel levels of accuracy in the DCT domain without interpolation. We show that subpixel motion information is preserved in the DCT of a shifted signal under some condition in the form of pseudophases, and we establish subpel sinusoidal orthogonal principles to extract this information. The proposed subpixel techniques are flexible and scalable in terms of estimation accuracy with very low computational complexity O(N2 ) compared to O(N4) for the full-search block-matching approach and its subpixel versions. Above all, motion estimation in the DCT domain instead of the spatial domain simplifies the conventional hybrid DCT-based video coder, especially the heavily loaded feedback loop in the conventional design, resulting in a fully DCT-based high-throughput video codec. In addition, the computation of pseudophases is local, and thus a highly parallel architecture is feasible for the DCT-based algorithms. Finally, simulation on video sequences of different characteristics shows comparable performance of the proposed algorithms to block-matching approaches

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:8 ,  Issue: 4 )