Cart (Loading....) | Create Account
Close category search window
 

A mechanical origin for electrical ageing and breakdown in polymeric insulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Conner, P. ; Inst. of Molecular & Biomolecular Electron., Univ. of Wales, Bangor, UK ; Jones, J.P. ; Llewellyn, J.P. ; Lewis, T.J.

The failure of polyolifinic solids, such as polyethylene and polypropylene, by fracture under mechanical stress has been studied extensively. The initial stages of such failure are considered to involve the scission of the main polymeric bonds, the generation of free radicals which induce bond-breaking chain reactions and the consequent growth of a population of sub-microscopic voids which ultimately coalesce into a propagating crack. Accompanying these processes is so-called fracto-emission, the generation of charged particles and electromagnetic radiation by fracture. All these features bear such remarkable resemblance to those occurring in the early stages of electrical breakdown of these same polymers that it becomes imperative to consider whether electrical breakdown has a mechanical origin. It has been suggested already that an electrical field in a dielectric will set up a mechanical stress which can become significant when the field approaches breakdown values (>108 V/m). The presence of this mechanical stress, which must be taken into account when considering the internal equilibrium of a dielectric, is not intuitively obvious but a number of results support its existence. In this paper, we outline the main features of the theoretical model for this stress and then describe new experiments which strikingly demonstrate its presence in polyethylene and polypropylene films under electrical stress. The implications of this demonstration for electrical ageing and breakdown are clear

Published in:

Conduction and Breakdown in Solid Dielectrics, 1998. ICSD '98. Proceedings of the 1998 IEEE 6th International Conference on

Date of Conference:

22-25 Jun 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.