By Topic

The flexibility of configurable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Villasenor, J. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Hutchings, B.

There has been growing recent interest in configurable computing, which can be viewed as a hybrid between ASICs and programmable processors. Configurable computing machines are implemented with programmable logic: flexible hardware that can be structured to fit the natural organization and data flow of a computation. The enabling device for configurable computing is the field-programmable array (FPGA). For applications characterized by deeply pipelined, highly parallel, and integer arithmetic processing, configurable computing machines can outperform alternative solutions by up to an order of magnitude. The combination in a single device of dedicated hardware and rapid, submillisecond-scale reprogrammability constitutes an exciting and promising development whose implications are only just beginning to be exploited. We begin with a brief tutorial on FPGAs that describes the most common FPGA architectures and how these architectures are used to support computation, memory access, and data flow. We then present FPGAs as computing machines and focus on devices that are reconfigured during run time. Ongoing research involving FPGAs and future directions are also discussed

Published in:

Signal Processing Magazine, IEEE  (Volume:15 ,  Issue: 5 )