Cart (Loading....) | Create Account
Close category search window
 

Parallel formulations of decision-tree classification algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Srivastava, A. ; Lab. of Inf. Technol., Hitachi America Ltd., Brisbane, CA, USA ; Eui-Hong Han ; Singh, V. ; Kumar, V.

Classification decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud detection, etc. Highly parallel algorithms for constructing classification decision trees are desirable for dealing with large data sets in reasonable amount of time. Algorithms for building classification decision trees have a natural concurrency, but are difficult to parallelize due to the inherent dynamic nature of the computation. We present parallel formulations of classification decision tree learning algorithm based on induction. We describe two basic parallel formulations. One is based on Synchronous Tree Construction Approach and the other is based on Partitioned Tree Construction Approach. We discuss the advantages and disadvantages of using these methods and propose a hybrid method that employs the good features of these methods. Experimental results on an IBM SP-2 demonstrate excellent speedups and scalability

Published in:

Parallel Processing, 1998. Proceedings. 1998 International Conference on

Date of Conference:

10-14 Aug 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.