By Topic

A nonlinear, image domain filtering method for cardiac PET images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Farquhar, T.H. ; Div. of Nucl. Med. & Biophys., California Univ., Los Angeles, CA, USA ; Chinn, G. ; Hoh, C.K. ; Huang, S.C.
more authors

An adaptive, nonlinear image domain filtering strategy is described which improves positron emission tomography (PET) images. The method was formulated to improve on the linear, low-pass filtering typically applied to each projection in the filtered back-projection (FBP) reconstruction algorithm. The algorithm is a potential alternative to linear smoothing which reduces noise but degrades resolution; this method uses the FBP algorithm for reconstruction, but aims to incorporate some of the statistical information and nonlinear smoothing utilized in iterative reconstruction algorithms. The approach uses sinogram segmentation to separate the sinogram elements with higher and lower signal-to-noise ratios, and then reconstruct each with FBP using a more appropriate choice of filter and cut-off frequency. Also, this algorithm addresses the radial streak artifacts introduced by FBP. The algorithm was evaluated using simulations clinical data of cardiac PET studies on an ECAT 931 PET scanner. The initial results suggest that this technique has advantages over the current clinical protocol. Images processed with the method show generally improved visual image quality and reduced radial streaks without the introduction of artifacts. In simulations, increased contrast recovery and resolution are realized without an increase in the background noise of the reconstructed images

Published in:

Nuclear Science, IEEE Transactions on  (Volume:45 ,  Issue: 4 )