Cart (Loading....) | Create Account
Close category search window
 

Estimation of maximum power supply noise for deep sub-micron designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi-Min Jiang ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Kwang-Ting Cheng ; Deng, A.-C.

We propose a new technique for generating a small set of patterns to estimate the maximum power supply noise of deep sub-micron designs. We first build the charge/discharge current and output voltage waveform libraries for each cell, taking power and ground pin characteristics, the power net RC and other input characteristics as parameters. Based on the cells current and voltage libraries, the power supply noise of a 2-vector sequence can be estimated efficiently by a cell-level waveform simulator. We then apply the genetic algorithm based on the efficient waveform simulator to generate a small set of patterns producing high power supply noise. Finally, the results are validated by simulating the obtained patterns using a transistor level simulator. Our experimental results show that the patterns generated by our approach produce a tight lower bound on the maximum power supply noise.

Published in:

Low Power Electronics and Design, 1998. Proceedings. 1998 International Symposium on

Date of Conference:

10-12 Aug. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.