Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

The systolic array genetic algorithm, an example of systolic arrays as a reconfigurable design methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bland, I.M. ; Dept. of Comput. Sci., Reading Univ., UK ; Megson, G.M.

We have designed and constructed a genetic algorithm engine using a systolic design methodology. The approach has a number of advantages. Firstly the design processes is systematic. A C source code version of the algorithm is used as a starting point and progressively the code is re-written into a form from where systolic cells can be designed. Secondly the modular nature of the arrays allow easy expansion of the design for different requirements (larger populations in this example). Hardware designs are re-used extensively and, in combination with reconfigurable computing techniques, can be swapped in or out on an application specific basis to construct arrays of the correct size. This can also be extended to swapping in and out whole elements of the macro-pipeline so that alternative operators, such as Tournament Selection can be employed. Thirdly, a traditional benefit of systolic arrays applies. The resultant design is massively parallel and significant throughput can be achieved

Published in:

FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Symposium on

Date of Conference:

15-17 Apr 1998