By Topic

How to make Zuse's Z3 a universal computer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rojas, R. ; Freie Univ. Berlin, Germany

The computing machine Z3, built by Konrad Zuse between 1938 and 1941, could execute only fixed sequences of floating point arithmetical operations (addition, subtraction, multiplication, division, and square root) coded in a punched tape. An interesting question to ask, from the viewpoint of the history of computing, is whether or not these operations are sufficient for universal computation. The paper shows that, in fact, a single program loop containing these arithmetical instructions can simulate any Turing machine whose tape is of a given finite size. This is done by simulating conditional branching and indirect addressing by purely arithmetical means. Zuse's Z3 is therefore, at least in principle, as universal as today's computers that have a bounded addressing space. A side effect of this result is that the size of the program stored on punched tape increases enormously

Published in:

Annals of the History of Computing, IEEE  (Volume:20 ,  Issue: 3 )