By Topic

Incoherent magnetization reversal process in discontinuous Fe50Co50/Ag multilayer thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. C. Kuo ; Inst. of Mater. Sci. & Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Y. D. Yao ; J. W. Chen ; H. C. Chiu

The possibility of incoherent magnetization reversal process in annealed Fe50Co50/Ag multilayer thin films has been studied. Small magnetoresistance was measured in as-deposited films; however, after annealing above 150°C, the highly mobile Ag atoms form bridges between the Ag layers, and the magnetoresistance increases. For example, after annealing at 225°C for 30 minutes, the TEM photographs show clearly the cross section of a discontinuous multilayer structure, the coercivity is relatively small, and the magnetoresistance reaches its largest value. This is explained by the formation of elongated clusters of disk-like ferromagnetic FeCo particles, the exchange coupling between these particles is weak due to the presence of Ag layer between them. In this case, an incoherent magnetization reversal process is assumed to be dominant. For samples annealed above 250°C, these disk-like ferromagnetic particles within a column grow larger due to diffusion. The exchange interaction increase due to the Ag atoms migrating to the bridges between the columns and decreasing the distance between disk-like ferromagnetic particles. The coercivity of the film then increases, and a coherent magnetization reversal process is assumed to become dominant

Published in:

IEEE Transactions on Magnetics  (Volume:34 ,  Issue: 4 )