By Topic

CFAR detection and estimation for STAP radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reed, I.S. ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Gau, Y.L. ; Truong, T.K.

The algorithm presented here provides both a constant false-alarm rate (CFAR) detection and a maximum likelihood (ML) Doppler-bearing estimator of a target in a background of unknown Gaussian noise. A target is detected, and its parameters estimated within each range gate by evaluating a statistical test for each Doppler-angle cell and by selecting the cell with maximum output and finally comparing it with a threshold. Its CFAR performance is analyzed by the use of the sample matrix inversion (SMI) method and is evaluated in the cases of a fully adaptive space-time adaptive processing (STAP) and two partially adaptive STAPs. The performances of these criteria show that the probability of detection is a function only of the sample size K used to estimate the covariance matrix and a generalized signal-to-noise ratio. The choice of the number K is a tradeoff between performance and computational complexity. The performance curves demonstrate that the finer the resolution is, the poorer the detection capability. That means that one can trade off the accuracy of ML estimation with the performance of the CFAR detection criterion

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:34 ,  Issue: 3 )