By Topic

On the consistency of minimum complexity nonparametric estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhiyi Chi ; Div. of Appl. Math., Brown Univ., Providence, RI, USA ; German, S.

Nonparametric estimation is usually inconsistent without some form of regularization. One way to impose regularity is through a prior measure. Barron and Cover (1991) have shown that complexity based prior measures can insure consistency, at least when restricted to countable dense subsets of the infinite-dimensional parameter (i.e., function) space. Strangely, however, these results are independent of the actual complexity assignment: the same results hold under an arbitrary permutation of the match-up of complexities to functions. We show that this phenomenon is related to the weakness of the convergence measures used. Stronger convergence can only be achieved through complexity measures that relate to the actual behavior of the functions

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 5 )