By Topic

Neurofuzzy model-based predictive control of weld fusion zone geometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, Y.M. ; Welding Res. & Dev. Lab., Kentucky Univ., Lexington, KY, USA ; Kovacevic, R.

A closed-loop system is developed to control the weld fusion, which Is specified by the top-side and back-side bead widths of the weld pool. Because in many applications only a top-side sensor is allowed, which is attached to and moves with the welding torch, an image processing algorithm and neurofuzzy model have been incorporated to measure and estimate the top-side and back-side bead widths based on an advanced top-side vision sensor. The welding current and speed are selected as the control variables. It is found that the correlation between any output and input depends on the value of another input. This cross coupling implies that a nonlinearity exists in the process being controlled. A neurofuzzy model is used to model this nonlinear dynamic process. Based on the dynamic fuzzy model, a predictive control system has been developed to control the welding process. Experiments confirmed that the developed control system is effective in achieving the desired fusion state despite the different disturbances

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )