By Topic

Nonlinear adaptive prediction of speech with a pipelined recurrent neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baltersee, J. ; Signal Process. Lab., Tech. Hochschule Aachen, Germany ; Chambers, J.A.

New learning algorithms for an adaptive nonlinear forward predictor that is based on a pipelined recurrent neural network (PRNN) are presented. A computationally efficient gradient descent (GD) learning algorithm, together with a novel extended recursive least squares (ERLS) learning algorithm, are proposed. Simulation studies based on three speech signals that have been made public and are available on the World Wide Web (WWW) are used to test the nonlinear predictor. The gradient descent algorithm is shown to yield poor performance in terms of prediction error gain, whereas consistently improved results are achieved with the ERLS algorithm. The merit of the nonlinear predictor structure is confirmed by yielding approximately 2 dB higher prediction gain than a linear structure predictor that employs the conventional recursive least squares (RLS) algorithm

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 8 )