Cart (Loading....) | Create Account
Close category search window
 

A direct approach to the design of QMF banks via frequency domain optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Huang ; Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA, USA ; Guoxiang Gu

This paper studies the design of quadrature mirror filter (QMF) banks via frequency domain optimization. A direct approach is adopted that gives the necessary and sufficient condition for perfect reconstruction (PR). While analysis filter banks are designed to achieve frequency domain specifications required for subband coding, synthesis filter banks are designed to minimize the reconstruction error in frequency domain. The criterion used to measure the reconstruction error is H or Chebyshev norm (sup-norm). State-space solutions are derived for the H optimization, and numerical algorithms are developed to obtain the optimal synthesis filter bank. Moreover, the asymptotic PR property is established for optimal H solution of the synthesis filter bank

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 8 )

Date of Publication:

Aug 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.