By Topic

Design, performance, and complexity analysis of residual trellis-coded vector quantizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aksu, A. ; Dept. of Wireless Access Technol., GTE Labs. Inc., Waltham, MA, USA ; Salehi, M.

Multistage trellis-coded vector quantization (MS-TCVQ) is developed as a constrained trellis source-coding technique. The performance of the two-stage TCVQ is studied for Gaussian sources. Issues of stage-by-stage design, output alphabet selection, and complexity are addressed with emphasis on selecting and partitioning the stage codebooks. For a given rate, MS-TCVQ achieves low encoding and storage complexity compared to TCVQ, and comparisons with same-dimensional multistage vector quantization indicate a 0.5-3-dB improvement in signal-to-quantization-noise ratio

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 8 )