By Topic

Near-optimum decoding of product codes: block turbo codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. M. Pyndiah ; Ecole Nat. Superieure des Telecommun. de Bretagne, Brest, France

This paper describes an iterative decoding algorithm for any product code built using linear block codes. It is based on soft-input/soft-output decoders for decoding the component codes so that near-optimum performance is obtained at each iteration. This soft-input/soft-output decoder is a Chase decoder which delivers soft outputs instead of binary decisions. The soft output of the decoder is an estimation of the log-likelihood ratio (LLR) of the binary decisions given by the Chase decoder. The theoretical justifications of this algorithm are developed and the method used for computing the soft output is fully described. The iterative decoding of product codes is also known as the block turbo code (BTC) because the concept is quite similar to turbo codes based on iterative decoding of concatenated recursive convolutional codes. The performance of different Bose-Chaudhuri-Hocquenghem (BCH)-BTCs are given for the Gaussian and the Rayleigh channel. Performance on the Gaussian channel indicates that data transmission at 0.8 dB of Shannon's limit or more than 98% (R/C>0.98) of channel capacity can be achieved with high-code-rate BTC using only four iterations. For the Rayleigh channel, the slope of the bit-error rate (BER) curve is as steep as for the Gaussian channel without using channel state information

Published in:

IEEE Transactions on Communications  (Volume:46 ,  Issue: 8 )