By Topic

A model-based approach for process design and its application to the titanium salicide process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Apte, P.P. ; Texas Instrum. Inc., Dallas, TX, USA ; Saxena, S. ; Rao, S. ; Prinslow, D.A.
more authors

Process technology development constitutes a significant cost in manufacturing integrated circuits. In this paper, we present a model-based approach for developing new process technology rapidly and inexpensively, using the salicide process to demonstrate the concepts. This approach is applied to evaluate performance tradeoffs, to develop insight into the underlying process physics, to quantify the impact of the salicide process on the device and circuit performance, and to estimate the process variability. The key idea of this approach is to group a sequence of process steps into a process module, and build simple and accurate process models for the module. The paper also illustrates the use of this model-based approach in synthesizing optimal processes rapidly based on requirements, contributing to the reduction of technology development cost and cycle time

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:11 ,  Issue: 3 )