Cart (Loading....) | Create Account
Close category search window
 

Precorrected-DCT techniques for modeling and simulation of substrate coupling in mixed-signal IC's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Costa, J.P. ; Dept. of Electr. & Comput. Eng., Inst. Superior Tecnico, Lisbon, Portugal ; Chou, M. ; Silveira, L.M.

Industry trends aimed at integrating higher levels of circuit functionality have triggered a proliferation of mixed analog-digital systems. Magnified noise coupling through the common chip substrate has made the design and verification of such systems an increasingly difficult task. In this paper we present a new method based on a precorrected-DCT algorithm that extends an eigendecomposition-based technique and can be used to accelerate operator application in BEM methods. This method is shown to avoid storage of a dense matrix, as is typical in BEM methods, while at the same time taking all of the substrate boundary effects into account explicitly. This technique can be used for accurate and efficient modeling of substrate coupling effects in mixed-signal integrated circuits

Published in:

Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on  (Volume:6 )

Date of Conference:

31 May-3 Jun 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.