By Topic

Semiblind identification of nonminimum-phase ARMA models via order recursion with higher order cumulants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chow, T.W.S. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong ; Hong-Zhou Tan

This paper develops a novel identification methodology for nonminimum-phase autoregressive moving average (ARMA) models of which the models' orders are not given. It is based on the third-order statistics of the given noisy output observations and assumed input random sequences. The semiblind identification approach is thereby named. By the order-recursive technique, the model orders and parameters can be determined simultaneously by minimizing well-defined cost functions. At each updated order, the AR and MA parameters are estimated without computing the residual time series (RTS), with the result of decreasing the computational complexity and memory consumption. Effects of the AR estimation error on the MA parameters estimation are also reduced. Theoretical statements and simulations results, together with practical application to the train vibration signals' modeling, illustrate that the method provides accurate estimates of unknown linear models, despite the output measurements being corrupted by arbitrary Gaussian noises of unknown pdf

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:45 ,  Issue: 4 )