By Topic

A vector control scheme for EV induction motors with a series iron loss model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinhwan Jung ; Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., South Korea ; Kwanghee Nam

Electric vehicle (EV) motors are characterized by their low inductance and high current density, so that they run at high speed and produce a high starting torque. Due to the low inductance coil design, the current ripple caused by pulsewidth modulation (PWM) switching makes a significant amount of eddy-current loss and hysteresis loss, especially in high-speed operation. If one simply neglects the iron loss, the overall vector controller is detuned, resulting in an error in the torque control. The iron loss is modeled, in general, by a parallel resistor RM to the magnetizing inductor LM. The authors propose a series R-L model that accounts for the effects of the iron loss. A major advantage of the series model is that it does not increase the number of state variables in developing a vector control. In this paper, they derive a rotor-flux-oriented flux error, orientation angle error, and torque error caused by iron loss. Finally, they demonstrate the effectiveness of the proposed control method through computer simulation and experimental results

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:45 ,  Issue: 4 )