Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Effects of regional stimulation using a miniature stimulator implanted in feline posterior biceps femoris

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cameron, T. ; Adv. Neuromodulation Systems Inc., Allen, TX, USA ; Richmond, F.J.R. ; Loeb, G.E.

The effects of placement of a miniature implantable stimulator on motor unit recruitment were examined in the posterior head of cat biceps femoris. The implantable stimulator (13-mm long×2-mm diameter) was injected either proximally near the main nerve branch, or distally near the muscle insertion, through a 12-gauge hypodermic needle. Glycogen-depletion methods were used to map the distribution of fibers activated by electrical stimulation. Muscle fibers were found to be depleted at most or all proximodistal levels of the muscle, but the density of depleted fibers varied transversely according to the stimulus strength and proximity of the device to the nerve-entry site. Thus, muscle cross sections often had a "patchy" appearance produced because different proportions of depleted fibers intermingled with undepleted fibers in different parts of the cross section. In other preparations, the force of muscle contraction was measured when stimuli of varying strengths were delivered by the stimulator positioned at the same proximal or distal sites within the muscle. Devices placed close to the nerve-entry site produced the greatest forces. Those placed more distally produced less force. As stimulus current and/or pulse width increased, muscle force increased, often in steps, until a maximum was reached, which was usually limited by the compliance voltage of the device to less than the force produced by whole nerve stimulation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:45 ,  Issue: 8 )