By Topic

A simple model of force generation by skeletal muscle during dynamic isometric contractions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bobet, J. ; Dept. of Phys. Therapy, Alberta Univ., Edmonton, Alta., Canada ; Stein, R.B.

The force that an isometric skeletal muscle will produce in response to time-varying stimulation ("dynamic isometric" force) is important both for understanding muscle function and for designing neuroprostheses. The paper reports a model for predicting the force produced by an isometric skeletal muscle at rest length in response to a wide range of stimulation patterns. The model consists of two linear, first-order systems separated by a static nonlinearity. The rate constant of the second first-order system varies with force level. The model was validated using three cat soleus and three cat plantaris muscles. The following whole-nerve stimulation trains were used: single pulses (twitches), 2-4 pulses, constant rates, triangularly modulated interpulse intervals, and randomly modulated interpulse intervals. The model reproduced most responses accurately. The model shows that a force-dependent rate constant is essential for model validity, and could be used in the control of neuroprostheses.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:45 ,  Issue: 8 )