By Topic

Binary PRCPM with differential phase detection and maximal ratio combining diversity in fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Korn, I. ; Sch. of Electr. Eng., New South Wales Univ., Sydney, NSW, Australia

We derive a formula for the bit-error probability (BEP) of binary partial-response continuous-phase modulation (PRCPM) with N-bit differential phase detection (DPD) in a Rician fading channel subject to L-branch maximum ratio combining (MRC) diversity. We compute the BEP for minimum-shift keying (MSK), Gaussian MSK (GMSK), and 2 RC (2-b-duration raised cosine) frequency signals as a function of the energy-to-noise ratio per bit Eb/N0 and other system and channel parameters [N=1 and 2 and L=1, 2, and 3, Rician factor K=-∞, 0, 6, 10, and ∝ dB, Doppler frequency shift fDT=0, 0.01, and 0.02, Gaussian premodulation filter bandwidth BgT=∞, 0.5, 0.25, and the presence or absence of a Doppler frequency tracking loop (DFTL) in the receiver]. In all cases, the BEP is significantly reduced by diversity

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:47 ,  Issue: 3 )