By Topic

Modulation-assisted unequal error protection over the fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sajadieh, M. ; AT&T Bell Labs., Holmdel, NJ, USA ; Kschischang, F.R. ; Leon-Garcia, A.

Unequal error protection (UEP) is essential when different portions of the source data do not contribute evenly to the overall duality of the decoded information. Conventional techniques achieve UEP by independent coding of the bit streams or by adopting conventional unequal error-protection codes. In this paper, we propose a practical alternative to the QPSK-based transmission systems with explicit UEP, such as GSM or IS-54 wireless transmission standards. In this scheme, the task of providing unequal protection is divided between the channel encoder and a nonuniform signal set, which discriminates in favor of the more important bits. The new approach allows for a simpler convolutional encoder and, hence, a less complex decoding procedure. Specifically, a reduction by more than half in the number of encoder states can easily be achieved using our scheme. Countering the degradation of the less important bits, we propose to adopt a high-rate punctured convolutional code to minimize the incurred transmission rate penalty. We also discuss a pilot sequence transmission scheme which realizes a coherent reception. Decentralizing the bit protection culminates in an extra degree of freedom which, in turn, introduces more flexibility into the system design

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:47 ,  Issue: 3 )