By Topic

SPICE simulation for analysis and design of fast 1.55 μm MQW laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rossi, G. ; Pavia Univ., Italy ; Paoletti, R. ; Meliga, M.

A rate equation model for static and dynamic behavior of 1.55 μm InGaAsP multiquantum-well (MQW) semiconductor lasers has been developed. A three level scheme for the rate equations has been chosen in order to model carrier transport effects. The introduction of quasi-two dimensional (quasi-2-D) gateway states between unbound and confined states has been used to calculate, for each well independently, carrier density and gain, allowing to take nonuniform injection into account. Starting from the formal identity between a rate equation and a Kirchoff current balance equation at a capacitor node, the model has been implemented on a SPICE circuit emulator, SPICE has granted an easy handling of parasitics and opens the possibility of integration with electrical components. The model's parameters have been directly derived from a complete set of measurements on real devices. Thanks to this characterization and the model accuracy, we have obtained good agreement between simulations and experimental data. The model was finally used to improve both static and dynamic properties of MQW devices. Based on this optimization, compressive strained InGaAsP-InP MQW Fabry-Perot lasers were realized, achieving low threshold current, high efficiency, and more than 10 GHz of direct modulation bandwidth

Published in:

Lightwave Technology, Journal of  (Volume:16 ,  Issue: 8 )