By Topic

Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Barada ; Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI, USA ; H. Singh

The paper describes an approach to generating optimal adaptive fuzzy neural models from I/O data. This approach combines structure and parameter identification of Takagi-Sugeno-Kang (TSK) fuzzy models. We propose to achieve structure determination via a combination of modified mountain clustering (MMC) algorithm, recursive least squares estimation (RLSE), and group method of data handling (GMDH). Parameter adjustment is achieved by training the initial TSK model using the algorithm of an adaptive network based fuzzy inference system (ANFIS), which employs backpropagation (BP) and RLSE. Further, a procedure for generating locally optimal model structures is suggested. The structure optimization procedure is composed of two phases: 1) locally optimal rule premise variables subsets (LOPVS) are identified using MMC, GMDH, and a search tree (ST); and 2) locally optimal numbers of model rules (LONOR) are determined using MMC/RLSE along with parallel simulation mean square error (PSMSE) as a performance index. The effectiveness of the proposed approach is verified by a variety of simulation examples. The examples include modeling of a nonlinear dynamical process from I/O data and modeling nonlinear components of dynamical plants, followed by tracking control based on a model reference adaptive scheme (MRAC). Simulation results show that this approach is fast and accurate and leads to several optimal models

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:28 ,  Issue: 3 )