By Topic

Fuzzy inference system learning by reinforcement methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jouffe, L. ; SODALEC Electron., Inst. Nat. des Sci. Appliques, Rennes, France

Fuzzy Actor-Critic Learning (FACL) and Fuzzy Q-Learning (FQL) are reinforcement learning methods based on dynamic programming (DP) principles. In the paper, they are used to tune online the conclusion part of fuzzy inference systems (FIS). The only information available for learning is the system feedback, which describes in terms of reward and punishment the task the fuzzy agent has to realize. At each time step, the agent receives a reinforcement signal according to the last action it has performed in the previous state. The problem involves optimizing not only the direct reinforcement, but also the total amount of reinforcements the agent can receive in the future. To illustrate the use of these two learning methods, we first applied them to a problem that involves finding a fuzzy controller to drive a boat from one bank to another, across a river with a strong nonlinear current. Then, we used the well known Cart-Pole Balancing and Mountain-Car problems to be able to compare our methods to other reinforcement learning methods and focus on important characteristic aspects of FACL and FQL. We found that the genericity of our methods allows us to learn every kind of reinforcement learning problem (continuous states, discrete/continuous actions, various type of reinforcement functions). The experimental studies also show the superiority of these methods with respect to the other related methods we can find in the literature

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:28 ,  Issue: 3 )