Cart (Loading....) | Create Account
Close category search window
 

Stacked gate mid-channel injection flash EEPROM cell. I. Programming speed and efficiency versus device structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, D.M. ; Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., South Korea ; Cho, M.K. ; Kwon, W.H.

Presents a new flash EEPROM cell which has been fabricated to achieve fast programming with low power. This memory cell attains speed and efficiency, comparable to the split-gate device, while preserving a simple stacked gate structure. The device programs faster than the stacked gate cell by a factor of about ten. Also, the threshold voltage shift of 5 V can be accomplished with the drain voltage of 3 V in about 50 μs. The proposed memory cell is strongly resistant against the punchthrough effect and is capable of erasure in byte unit at the drain side. Factors pertinent to programming are discussed, theoretically and experimentally, in correlation with device structures. The hot electron dwell time in the channel is shown to be an important parameter, affecting the programming speed and efficiency

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 8 )

Date of Publication:

Aug 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.