By Topic

Dispersive properties of optical filters for WDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lenz, G. ; AT&T Bell Labs., Murray Hill, NJ, USA ; Eggleton, B.J. ; Giles, C.R. ; Madsen, C.K.
more authors

Wavelength division multiplexing (WDM) communication systems invariably require good optical filters meeting stringent requirements on their amplitude response, the ideal being a perfectly rectangular filter. To achieve high bandwidth utilization, the phase response of these filters is of equal importance, with the ideal filter having perfectly linear phase and therefore constant time delay and no dispersion. This aspect of optical filters for WDM systems has not received much attention until very recently. It is the objective of this paper to consider the phase response and resulting dispersion of optical filters in general and their impact on WDM system performance. To this end we use general concepts from linear systems, in particular, minimum and nonminimum phase response and the applicability of Hilbert transforms (also known as Kramers-Kronig relations). We analyze three different classes of optical filters, which are currently being used in WDM systems and compare their performance in terms of their phase response. Finally, we consider possible ways of linearizing the phase response without affecting the amplitude response, in an attempt to approximate the ideal filter and achieve the highest bandwidth utilization

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 8 )