By Topic

Image compression based on fuzzy algorithms for learning vector quantization and wavelet image decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karayiannis, N.B. ; Dept. of Electr. Eng. & Comput. Eng., Houston Univ., TX, USA ; Pin-I Pai ; Zervos, H.

This paper evaluates the performance of an image compression system based on wavelet-based subband decomposition and vector quantization. The images are decomposed using wavelet filters into a set of subbands with different resolutions corresponding to different frequency bands. The resulting subbands are vector quantized using the Linde-Buzo-Gray (1980) algorithm and various fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive neural network through an unsupervised learning process. The quality of the multiresolution codebooks designed by these algorithms is measured on the reconstructed images belonging to the training set used for multiresolution codebook design and the reconstructed images from a testing set

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 8 )