By Topic

Use of nonlinear principal component analysis and vector quantization for image coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tzovaras, D. ; Dept. of Electr. & Comput. Eng., Thessaloniki Univ. ; Strintzis, M.G.

The nonlinear principal component analysis (NLPCA) method is combined with vector quantization for the coding of images. The NLPCA is realized using the backpropagation neural network (NN), while vector quantization is performed using the learning vector quantizer (LVQ) NN. The effects of quantization in the quality of the reconstructed images are then compensated by using a novel codebook vector optimization procedure

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 8 )