By Topic

Toward a completely automatic neural-network-based human chromosome analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
B. Lerner ; Comput. Lab., Cambridge Univ., UK

The application of neural networks (NNs) to automatic analysis of chromosome images is investigated in this paper. All aspects of the analysis, namely segmentation, feature description, selection and extraction, and classification, are studied. As part of the segmentation process, the separation of clusters of partially occluded chromosomes, which is the critical stage that state-of-the-art chromosome analyzers usually fail to accomplish, is performed. First, a moment representation of the image pixels is clustered to create a binary image without a need for threshold selection. Based on the binary image, lines connecting cut points imply possible separations. These hypotheses are verified by a multilayer perceptron (MLP) NN that classifies the two segments created by each separating line. Use of a classification-driven segmentation process gives very promising results without a need for shape modeling or an excessive use of heuristics. In addition, an NN implementation of Sammon's mapping using principal component based initialization is applied to feature extraction, significantly reducing the dimensionality of the feature space and allowing high classification capability. Finally, by applying MLP based hierarchical classification strategies to a well-explored chromosome database, we achieve a classification performance of 83.6%. This is higher than ever published on this database and an improvement of more than 10% in the error rate. Therefore, basing a chromosome analysis on the NN-based techniques that are developed in this research leads toward a completely automatic human chromosome analysis

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:28 ,  Issue: 4 )