By Topic

An improved digital current control of a PM synchronous motor with a simple feedforward disturbance compensation scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyeong-Hwa Kim ; Living Syst. R&D Centre, Samsung Electron. Co. Ltd., Suwon City, South Korea ; In-Cheol Baik ; Myung-Joong Youn

An improved digital current control technique of a permanent magnet (PM) synchronous motor with a simple feedforward disturbance compensation scheme is presented. Among the various current control schemes for an inverter-fed PM synchronous motor drive, the predictive control is known to give a superior performance. This scheme, however, requires the full knowledge of machine parameters and operating conditions, and cannot give a satisfactory response under the parameter mismatch. To overcome such a limitation, the disturbances caused by the parameter variations are estimated by using a disturbance observer theory and used for the computation of the reference voltages by a feedforward control. Thus, the steady state control performance can be significantly improved with a relatively simple control algorithm, while retaining the good characteristics of the predictive control. The proposed control scheme is implemented on a PM synchronous motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative simulations and experiments

Published in:

Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE  (Volume:1 )

Date of Conference:

17-22 May 1998