By Topic

A 2.56-Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maeno, Y. ; NEC Corp., Kawasaki, Japan ; Suemura, Y. ; Tajima, A. ; Henmi, H.

We propose an implementation of a terabits-per-second crossbar-equivalent switch-fabric for packet-switching networks. It consists of switch-modules employing semiconductor optical amplifier gates (SOAGs), arrayed waveguide grating routers, and multiple wavelength-channels. It offers large modularity and a small internal loss. The number of SOAGs in a 256/spl times/256 switch-fabric is one-eighth that of a conventional switch-fabric. Scalability up to 2.56 Tb/s is demonstrated by a 10 Gb/s transmission experiment in which the input level into the switch-module was observed to possess a dynamic range of 6 dB.

Published in:

Photonics Technology Letters, IEEE  (Volume:10 ,  Issue: 8 )